More

    Astronomers Watch as a Star Swallows an Entire Planet: Earth’s Final Fate

    This natural process between the Sun and the Earth is expected to be completed within 5 billion years

    Must Read

    TCRN STAFFhttps://www.TheCostaRicaNews.com
    Creating a Conscious alternative news network that we feel the world needs. Pura Vida!

    Astronomers have observed, for the first time, how a star swallows an entire planet, a fate that the Earth will suffer within 5 billion years, according to research published in the journal ‘Nature’.

    When a star runs out of fuel it swells to 1 million times its original size, gobbling up whatever matter, including planets, it finds in its path. Scientists have observed hints of stars just before, and shortly after, the act of consuming entire planets, but have never caught one in the act until now.

    Final fate

    In the study, scientists from the Massachusetts Institute of Technology (MIT), Harvard University, Caltech and other centers in the United States report that they have observed for the first time a star swallowing a planet. The planetary demise appears to have taken place in our own galaxy, some 12,000 light-years away, near the constellation Aquila. There, astronomers observed a star outburst that grew more than 100 times brighter in just 10 days, before rapidly fading.

    Interestingly, this flash of white light was followed by a longer lasting, cooler signal. The scientists deduced that this combination could only be due to one event: a star engulfing a nearby planet. “We were seeing the final phase of the engulfment”, said lead author Kishalay De, a postdoctoral researcher at MIT’s Kavli Institute for Astrophysics and Space Research, in a statement. In fact, scientists estimate that the planet that vanished was probably a hot Jupiter-sized world that spiraled in, was swept up by the dying star’s atmosphere and eventually by its core.

    That could be our future

    The Earth will suffer the same fate, although not for another 5 billion years, when the Sun is expected to burn out and burn the inner planets of the Solar System. “We are looking into the future of Earth”, says De. “If some other civilization were watching us from 10,000 light-years away as the sun engulfed Earth, they would see the sun suddenly shine as it ejected some material, then it forms dust around it, before returning to what it was.

    The team discovered the burst in May 2020. However, it took astronomers another year to find an explanation for what it could be. The initial signal turned up in a search of data taken by the Zwicky Transient Facility (ZTF), which is based at Caltech’s Palomar Observatory in California. The ZTF is an observatory that scans the sky for stars that change rapidly in brightness, the pattern of which could indicate the presence of supernovae, gamma-ray bursts, and other stellar phenomena.

    A potential Jupiter

    De was looking through the ZTF data for signs of flares in binary stars, systems in which 2 stars orbit around each other, one of which draws mass from the other every so often and briefly brightens as a result. “One night, I observed a star that brightened by a factor of 100 over the course of a week, out of nowhere”, recalls De. “It did not look like any starburst I have ever seen in my life”.

    Hoping to determine the source with more data, De turned to observations of the same star made by the Keck Observatory in Hawaii. Keck telescopes make spectroscopic measurements of starlight, which scientists can use to discern a star’s chemical composition.

    But what De discovered left him even more perplexed. While most binary stars give off stellar material, such as hydrogen and helium, as one star erodes the other, the new source gave off none of it. Instead, what De saw were signs of “peculiar molecules” that can only exist at very cold temperatures. “These molecules are only seen in very cool stars”, says De. “And when a star lights up, it usually gets hotter. Therefore, the low temperatures and the brightness of the stars do not go hand in hand.

    It then became clear that the signal was not from a stellar binary. De decided to wait for more responses to emerge. About a year after his initial discovery, he and his colleagues analyzed observations of the same star, this time taken with an infrared camera at the Palomar Observatory. Within the infrared band, astronomers can see signs of cooler material, in contrast to the white-hot optical emissions that arise from binaries and other extreme stellar events.

    “That infrared data made me fall out of my chair”, recalls De. “The source was incredibly bright in the near infrared”.

    Apparently, after its initial hot flash, the star continued to spew out cooler energy for the next year. That icy material was probably gas from the star that shot up into space and condensed into dust, cold enough to be detected at infrared wavelengths. These data suggest that the star could be merging with another rather than shining as a result of a supernova explosion.

    But when the team further analyzed the data and combined it with measurements made by NASA’s infrared space telescope, NEOWISE, they came to a much more interesting conclusion. From the data collected, they calculated the total amount of energy released by the star since its initial outburst and found it to be surprisingly small: about 1/1,000 the magnitude of any observed stellar merger in the past.

    “That means that whatever merged with the star has to be a thousand times smaller than any other star we have seen”, De notes. “And it is a happy coincidence that Jupiter’s mass is about 1/1,000 the mass of the Sun”. It was then that we realized: This was a planet, colliding with its star.

    With the pieces in place, scientists were finally able to explain the initial burst. The bright, hot flash was likely the final moment of a Jupiter-sized planet being swept up in the atmosphere of a dying star. As the planet fell into the star’s core, the outer layers of the star fell off and settled as cold dust over the next year.

    “For decades we have been able to see the before and after”, says De. “Before, when the planets still orbit very close to their star and after that, just when a planet has already been swallowed and the star is gigantic. What we lacked was to capture the star in the act, when a planet suffers this fate in real time;that is what makes this discovery really exciting”.

    Resonance Costa Rica
    At Resonance, we aspire to live in harmony with the natural world as a reflection of our gratitude for life. Visit and subscribe at Resonance Costa Rica Youtube Channel https://youtube.com/@resonanceCR
    - Advertisement -

    Subscribe to our newsletter

    Get all the latest news, events, offers and special announcements.

    Latest News

    National Costa Rican Museum will Move 3 Large Pre-Columbian Spheres from Santa Ana to San José

    On the morning of this past Thursday, the transfer of three large pre-Columbian spheres will begin from the Matra...

    More Articles Like This

    Language »